Analytic Semigroups of Holomorphic Mappings and Composition Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting semigroups of holomorphic mappings

Let S1 = {Ft}t≥0 and S2 = {Gt}t≥0 be two continuous semigroups of holomorphic self-mappings of the unit disk ∆ = {z : |z| < 1} generated by f and g, respectively. We present conditions on the behavior of f (or g) in a neighborhood of a fixed point of S1 (or S2), under which the commutativity of two elements, say, F1 and G1 of the semigroups implies that the semigroups commute, i.e., Ft◦Gs = Gs◦...

متن کامل

Semiflow of analytic functions and semigroups of composition operators

Abstract The study of analytic semiflows on the open unit disc and the particular form of its infinitesimal generator G makes possible the study of semigroups of composition operators (T (t))t≥0 on various well-known spaces of holomorphic functions such as Hardy, Dirichlet and Bergman spaces. We will provide compactness, analyticity and invertibility complete characterization of (T (t))t≥0 in t...

متن کامل

Metric Domains, Holomorphic Mappings and Nonlinear Semigroups

We study nonlinear semigroups of holomorphic mappings on certain domains in complex Banach spaces. We examine, in particular, their differentiability and their representations by exponential and other product formulas. In addition, we also construct holomorphic retractions onto the stationary point sets of such semigroups.

متن کامل

Semigroups of Weighted Composition Operators in Spaces of Analytic Functions

We study the strong continuity of weighted composition semigroups of the form Ttf = φ′t (f ◦ φt) in several spaces of analytic functions. First we give a general result on separable spaces and use it to prove that these semigroups are always strongly continuous in the Hardy and Bergman spaces. Then we focus on two non-separable family of spaces, the mixed norm and the weighted Banach spaces. We...

متن کامل

Generation Theory for Semigroups of Holomorphic Mappings in Banach Spaces

We study nonlinear semigroups of holomorphic mappings in Banach spaces and their infinitesimal generators. Using resolvents, we characterize, in particular, bounded holomorphic generators on bounded convex domains and obtain an analog of the Hille exponential formula. We then apply our results to the null point theory of semi-plus complete vector fields. We study the structure of null point set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Methods and Function Theory

سال: 2017

ISSN: 1617-9447,2195-3724

DOI: 10.1007/s40315-017-0227-x